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Abstract
We consider the possible generation of singularities of a vector field transported
by diffeomorphisms with derivatives of uniformly bounded determinants. We
find relations between the directions of the vector field and the eigenvectors
of the derivative of the back-to-label map near the singularity. We also find
an invariant when we follow the motion of the integral curves of the vector
field. For the 3D incompressible Euler equations these results have immediate
implications about the directions of the vortex stretching and the material
stretching near the possible singularities. We also have similar applications to
other inviscid fluid equations such as the 2D quasi-geostrophic equation and
the 3D magnetohydrodynamics equations.

PACS numbers: 47.10.−g, 47.10.ad
Mathematics Subject Classification: 35Q30, 76B03, 76D05

1. Vector fields transported by diffeomorphisms

1.1. Statement of the theorems

Let D be a domain in R
n, and T ∈ (0,∞]. Suppose that for all t ∈ [0, T ) the mapping

a → X(a, t) is a diffeomorphism on D. We denote by A(·, t) the inverse mapping of X(·, t),
satisfying

A(X(a, t), t) = a, X(A(x, t), t) = x ∀a, x ∈ D, ∀t ∈ [0, T ).

In the applications to hydrodynamics in the next section the mapping {X(·, t)} is defined by a
smooth velocity field v(x, t) through the system of the ordinary differential equations:

∂X(a, t)

∂t
= v(X(a, t), t); X(a, 0) = a ∈ D ⊂ R

n. (1.1)
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In such a case we say the ‘particle trajectory’ map X(·, t) and its inverse, the ‘back-to-label’
map A(·, t) are generated by the fluid velocity field v(x, t).

Definition 1.1. We say that a parameterized vector field W(·, ·) : D × [0, T ) → R
n is

transported by a differentiable mapping X(·, t) from D into itself for all t ∈ [0, T ) if

W(X(a, t), t) = ∇aX(a, t)W0(a) (1.2)

holds for all (a, t) ∈ D × [0, T ), where we set W0(x) = W(x, 0).

We note that (1.2) corresponds to the well-known vorticity transport formula for the
incompressible Euler equations. Actually it is well known (see e.g. [32]) that (1.2) is equivalent
to saying that the vector field W(x, t) satisfies the system of differential equations:⎧⎨

⎩
∂W

∂t
+ (v · ∇)W = (W · ∇)v,

W(x, 0) = W0(x)

(1.3)

on D × [0, T ), where v(x, t) is defined from X(·, t) by (1.1). In this paper we are concerned
with the study of the direction of W(x, t) and the directions of stretching/compressions
induced by a ‘generalized volume preserving’ mapping X(·, t) near possible singularities
in (1.2) (or, equivalently in (1.3)). This will be done efficiently in terms of the derivative
of its inverse mapping A(·, t) = X−1(·, t). The main motivation of the current study is to
understand the dynamic relation between the vortex stretching and the material stretching
when we approach possible singularities in the 3D incompressible Euler equations and other
inviscid flows.

Theorem 1.1. Let W(x, t) be a vector field on D ⊂ R
n defined for t ∈ [0, T ). We set

W0(x) = W(x, 0) with ‖W0‖L∞(D) < ∞. Suppose W(x, t) is transported by a diffeomorphism
{X(·, t)}t∈[0,T ) on D ⊂ R

n, whose inverse is A(·, t). We assume that

sup
(a,t)∈D×[0,T )

|det(∇aX(a, t))| < ∞. (1.4)

Let us set by {(λj , ej )}nj=1 the eigenvalue and eigenvector pairs of the symmetric, positive
definite matrix

M(x, t) = (∇A(x, t))∗∇A(x, t)

with the order of magnitude

λ1 � λ2 � · · · � λn > 0. (1.5)

Suppose there exists a sequence (xk, tk) and (x̄, t̄ ) in D̄ × [0, T ] such that limk→∞(xk, tk) =
(x̄, t̄ ) and

lim
k→∞

|W(xk, tk)| = ∞.

Then, necessarily

lim
k→∞

λ1(xk, tk) = ∞, and lim
k→∞

λn(xk, tk) = 0. (1.6)

Let m be the largest number in {1, . . . , n} such that

lim
k→∞

λj (xk, tk) > 0 ∀j ∈ {1, . . . , m}. (1.7)

We set by �(x, t) the direction field of W(x, t) defined by

�(x, t) = W(x, t)

|W(x, t)| whenever |W(x, t)| 	= 0.
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Then,

lim
k→∞

ej (xk, tk) · �(xk, tk) = 0 ∀j ∈ {1, . . . , m}. (1.8)

Remark 1.1. Let v ∈ R
n. Then, the quantity |∇aX(a, t)v|/|v| has the meaning of the rate of

stretching(compression) in the direction of v induced by the trajectory mapping X(·, t) if the
quantity is more(less) than 1. Indeed, let {γ0(s)}s∈(−ε,ε) be a curve in R

n such that

γ0(0) = a,
∂γ0(s)

∂s

∣∣∣∣
s=0

= v.

We set X(γ0(s), t) = γ (s, t). Then,

∂γ (s, t)

∂s
= ∇aX(γ0(s), t)

∂γ0(s)

∂s
, (1.9)

and

|∇aX(a, t)v|
|v| =

∣∣∇aX(γ0(s), t)
∂γ0(s)

∂s

∣∣∣∣ ∂γ0(s)

∂s

∣∣
∣∣∣∣∣
s=0

=
∣∣ ∂γ (s,t)

∂s

∣∣∣∣ ∂γ0(s)

∂s

∣∣
∣∣∣∣∣
s=0

=
∣∣∣∣∂γ (s, t)

∂γ0(s)

∣∣∣∣
s=0

, (1.10)

which provides us with the desired interpretation. By the Rayleigh–Ritz theorem [25] and the
fact that X(·, t) is a diffeomorphism we have

λ1(x, t) = max{λ1(x, t), . . . , λn(x, t)}
= sup

v 	=0

v∗M(x, t)v

|v|2 = sup
v 	=0

|∇A(x, t)v|2
|v|2

= sup
w 	=0

|w|2
|∇aX(a, t)w|2 = 1

infw 	=0
|∇aX(a,t)w|2

|w|2
.

Hence,

inf
v 	=0

|∇aX(a, t)v|
|v| = 1√

λ1(x, t)
, (1.11)

where x = X(a, t). Similarly, for λn(x, t) = min{λ1(x, t), . . . , λn(x, t)}, we obtain

sup
v 	=0

|∇aX(a, t)v|
|v| = 1√

λn(x, t)
(1.12)

with x = X(a, t). In particular, in the case of det(∇aX(a, t)) ≡ 1 (incompressible flow),
the quantity 1/

√
λ1(x, t)(< 1) has the meaning of the minimum compression rate, while

1/
√

λn(x, t)(> 1) has the meaning of the maximum stretching rate at (x, t), except the case
∇aX(a, t) = I , where a = A(x, t).

Remark 1.2. In particular (1.6) implies that the directions of the infinite stretching rate and
the zero compression rate are mutually orthogonal to each other.

Remark 1.3. Since limk→∞ λj (xk, tk) = 0 for all j = m + 1, . . . , n by the hypothesis of the
above theorem, the conclusion (1.8) implies that as (xk, tk) → (x̄, t̄ ) the sequence of direction
vectors {�(xk, tk)} tends to be on the linear span generated by the vectors with the directions
of infinite stretching rates.

The first part of the following theorem could be regarded as a generalization of the
well-known Helmholtz vortex theorem for the incompressible Euler equations [24].
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Theorem 1.2. Suppose W(x, t) is a vector field transported by a diffeomorphism {X(·, t)}, t ∈
[0, T ). Let {γ0(s)}s∈I be an integral curve of W(x, 0), then γ (s, t) := X(γ0(s), t) is also an
integral curve of W(γ (s, t), t). Moreover, we have the following invariant:

|W(γ (s, t), t)|∣∣ ∂γ (s,t)

∂s

∣∣ = |W0(γ0(s))|∣∣ ∂γ0(s)

∂s

∣∣ . (1.13)

Remark 1.4. We will see in the proof of the above theorem that the invariant (1.13) is due to
the fact that the integral curve of a vector field has re-parametrization symmetry.

1.2. Proof of the theorems

Proof of Theorem 1.1. The vector field transport formula

W(X(a, t), t) = ∇aX(a, t)W0(a)

can be written as

∇A(x, t)W(x, t) = W0(A(x, t)) (1.14)

in terms of A(x, t) = X−1(x, t). Hence,

|W0(A(x, t))|2 = W(x, t)∗(∇A(x, t))∗∇A(x, t)W(x, t)

= |W(x, t)|2�(x, t)∗M(x, t)�(x, t)

= |W(x, t)|2 (
λ1(x, t)�̃2

1(x, t) + · · · + λn(x, t)�̃2
n(x, t)

)
, (1.15)

where we set

�̃(x, t) = O(x, t)�(x, t), O∗MO = diag(λ1, . . . , λn).

Namely, the n × n orthogonal matrix O(x, t) diagonalizes the positive definite, symmetric
matrix M. By the hypothesis (1.4),

� := inf
(x,t)∈D×[0,T )

[λ1(x, t) . . . λn(x, t)]

= inf
(x,t)∈D×[0,T )

det M = inf
(x,t)∈D×[0,T )

det(∇A(x, t))2

= 1

sup(x,t)∈D×[0,T ) det(∇aX(a, t))
∣∣2
a=A(x,t)

> 0. (1.16)

By definition

�̃2
1(x, t) + · · · + �̃2

n(x, t) = |O(x, t)�(x, t)|2 = |�(x, t)|2 = 1. (1.17)

Hence, from (1.15) and the inequality a1+···+an

n
� (a1 . . . an)

1
n for a1, . . . , an � 0, we obtain

that

‖W0‖2
L∞

|W(x, t)|2 � λ1(x, t)�̃2
1(x, t) + · · · + λn(x, t)�̃2

n(x, t)

� n
(
λ1(x, t)�̃2

1(x, t) . . . λn(x, t)�̃2
n(x, t)

) 1
n

= n (λ1(x, t) . . . λn(x, t))
1
n

(
�̃2

1(x, t) . . . �̃2
n(x, t)

) 1
n

� n�
1
n

∣∣�̃1(x, t) . . . �̃n(x, t)
∣∣ 2

n . (1.18)

Let {(xk, tk)} be a sequence such that (xk, tk) → (x̄, t̄ ) as k → ∞, and

lim
k→∞

|W(xk, tk)| = ∞.

4
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Then, the first inequality of (1.18) implies that

lim
k→∞

λj (xk, tk)�̃
2
j (xk, tk) = 0 ∀j = 1, . . . , n. (1.19)

From (1.17) we find that there exists j0 ∈ {1, . . . , n} such that

lim inf
k→∞

|�̃j0(xk, tk)| � 1√
n
. (1.20)

Hence, from (1.5) we have

lim
k→∞

λn(xk, tk) � lim
k→∞

λj0(xk, tk) = 0, (1.21)

which, in turn, implies by (1.16) and (1.8) that

lim
k→∞

λ1(xk, tk) = ∞. (1.22)

Thus we find there exists m ∈ {1, . . . , n−1} satisfying (1.7). Now (1.19) and (1.7) imply that

lim
k→∞

�̃j (xk, tk) = lim
k→∞

[O(xk, tk)�(xk, tk)]j = lim
k→∞

ej (xk, tk) · �(xk, tk) = 0

for all j ∈ {1, . . . , m}. �

Proof of Theorem 1.2. Taking derivative of γ (s, t) = X(γ0(s), t) with respect to s ∈ I , we
have

∂γ (s, t)

∂s
= ∇aX(γ0(s), t)

∂γ0(s)

∂s
. (1.23)

Since W(x, t) is transported by {X(·, t)}, we have, along the curve t �→ γ (s, t),

W(γ (s, t), t) = ∇aX(γ0(s), t)W0(γ0(s)). (1.24)

By hypothesis, since γ0(s) is an integral curve of W0(γ0(s)), there exists f (s) 	= 0 for all
s ∈ I such that

∂γ0(s)

∂s
= f (s)W0(γ0(s)), (1.25)

and from (1.23) we have

∂γ (s, t)

∂s
= f (s)∇aX(γ0(s), t)W0(γ0(s)) = f (s)W(γ (s, t), t), (1.26)

which shows that s �→ γ (s, t) is an integral curve of W(γ (s, t), t) for each t ∈ [0, T ). From
(1.25) and (1.26) we obtain

1

|f (s)| = |W(γ (s, t), t)|∣∣ ∂γ

∂σ
(s, t)

∣∣ = |W0(γ0(s)|∣∣ ∂γ0

∂σ
(s)

∣∣ . (1.27)

�

2. Applications to inviscid hydrodynamics

We discuss the implications of the previous general theorems on some of the ideal fluid
mechanics equations.

5
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2.1. The surface quasi-geostrophic equation

In this subsection we are concerned with the the following 2D quasi-geostrophic equation in
R

2:

(QG)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂θ

∂t
+ (v · ∇)θ = 0,

v = −∇⊥(−	)−
1
2 θ,

θ(x, 0) = θ0(x),

where θ = θ(x1, x2, t) denotes the scalar temperature, v = (v1, v2), vj = vj (x1, x2, t), j =
1, 2, is the velocity of the fluid, and ∇⊥ = (−∂x2 , ∂x1). Thanks to the pioneering work by
Constantin, Majda and Tabak [14], in particular the observation of its resemblance to the
3D Euler equations, there are many studies on (QG) (see, e.g. [10, 15, 16, 18, 33, 34] and
references therein). Let {X(·, t)} be the particle trajectory mapping generated by v(x, t).
Taking operation of ∇⊥ on the first equation of (QG) we obtain

∂

∂t
∇⊥θ + (v · ∇)∇⊥θ = (∇⊥θ · ∇)v, (2.1)

from which we have the transport formula for ∇⊥θ(x, t),

∇⊥θ(X(a, t), t) = ∇aX(a, t)∇⊥θ0(a). (2.2)

As in the previous section we set the back-to-label map, A(·, t) = X−1(·, t) below.
The following theorem is immediate from (2.2) and theorem 1.1, and the fact that det
(∇aX(a, t)) ≡ 1, which is equivalent to the incompressibility condition, div v = 0.

Theorem 2.1. Let (v(x, t), θ(x, t)) be a smooth solution of (QG) with initial data satisfying
‖∇θ0‖L∞ < ∞, which generates the particle trajectory map {X(·, t)} and the back-to-label
map A(·, t). We set the direction vector field ξ(x, t) = ∇⊥θ(x,t)

|∇⊥θ(x,t)| , and let {e1(x, t), e2(x, t)}
and {λ1(x, t), λ2(x, t)} be the normalized eigenvectors and the corresponding eigenvalues of
the matrix

M(x, t) = (∇A(x, t))T ∇A(x, t).

We keep the order of magnitude such that

λ1(x, t) > λ2(x, t) > 0 ∀(x, t).

Suppose there exists a sequence {(xk, tk)} tending to (x̄, t̄ ) as k → ∞ such that
limk→∞ |∇θ(xk, tk)| = ∞, then necessarily

lim
k→∞

λ1(xk, tk) = ∞, lim
k→∞

λ2(xk, tk) = 0, (2.3)

and

lim
k→∞

|ξ(xk, tk) − e2(xk, tk)| = 0. (2.4)

We just note that (2.4) follows from

lim
k→∞

ξ(xk, tk) · e1(xk, tk) = 0 (2.5)

together with (ξ · e1)
2 + (ξ · e2)

2 = |ξ |2 = 1. On the other hand hand, (2.4) implies that the
direction field tends to align with the direction of the infinite stretching rate near the possible
singularity, while (2.5) shows that the direction of zero compression rate is orthogonal to it.

Since any smooth level curve of θ0 is an integral curve of ∇⊥θ0, applying theorem 1.2 to
(QG), we obtain the following theorem.

6
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Theorem 2.2. Let (θ(x, t).v(x, t)) be a smooth solution of (QG), and {X(·, t)} the
particle trajectory generated by v(x, t). Let {γ0(s)}s∈I be a level curve of θ0. We set
γ (s, t) = X(γ0(s), t), then γ (s, t) is also a level curve of θ(x, t). Moreover, we have the
following invariants along the trajectories of level curves of θ(x, t):

|∇⊥θ(γ (s, t), t)|∣∣ ∂γ (s,t)

∂s

∣∣ = |∇⊥θ0(γ0(s))|∣∣ ∂γ0(s)

∂s

∣∣ . (2.6)

Corollary 2.1. Suppose there exist a sequence {(sk, tk)} and (s̄, t̄ ) such that (sk, tk) → (s̄, t̄ ),
and

lim
k→∞

|∇⊥θ(γ (sk, tk), tk)| = ∞, (2.7)

then necessarily

lim
k→∞

∣∣∣∣∂γ

∂s
(sk, tk)

∣∣∣∣ = ∞. (2.8)

Namely, the blow-up of |∇⊥θ | at a point is accompanied by an infinite stretching of level
curves at the same point in the tangential direction to the curve.

2.2. The Euler equations for isentropic flows

We are concerned here with the following Euler equations for the isentropic fluid flows in
R

n, n = 2, 3,

(E)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρ
∂v

∂t
+ ρ(v · ∇)v = −∇p,

∂ρ

∂t
+ div(ρv) = 0,

v(x, 0) = v0(x), ρ(x, 0) = ρ0(x),

where v = (v1, . . . , vn), vj = vj (x, t), j = 1, . . . , n, is the velocity of the flow, ρ = ρ(x, t)

is the mass density of the fluid, p = p(x, t) is the scalar pressure, and v0, ρ0 are the given
initial velocity and density. The homogeneous incompressible Euler equations corresponds to
ρ(x, t) ≡ const., for which we denote by (E)0. The problems of finite time blow-up/global
regularity for the systems (E) and (E)0 are both outstanding open problems in the mathematical
fluid mechanics. For (E)0 there are results on the blow-up criterion initiated by Beale, Kato
and Majda [2], and refined by authors in [4, 10, 12, 28, 29, 31]). The study of the Euler
system in terms of the volume preserving maps was previously done by many authors(see
e.g. [1, 3]). The geometric-type approaches emphasizing the role of the direction of vorticity
for the regularity/singularity of solutions are studied in [13, 19, 20, 23, 6], the spectral
dynamics-type approaches are studied in [30, 5], and some of the plausible scenarios leading
to singularities are excluded in [7, 8, 17, 18]. Let {X(·, t)} be the particle trajectory
mapping generated by v(x, t), defined by a smooth solution of the solutions of (E), and
A(x, t) = X−1(x, t) be the back-to-label map. Let ω(x, t) = curl v(x, t) be the vorticity. The
following vorticity transport formula is well known (see e.g. [9]) for (E):

ω(X(a, t), t)

ρ(X(a, t), t)
= ∇aX(a, t)

ω0(a)

ρ0(a)
. (2.9)

Applying theorem 1.1 to the case of (E)0, for which we have

ω(X(a, t), t) = ∇aX(a, t)ω0(a), (2.10)

as well as det (∇aX(a, t)) ≡ 1, we obtain the following theorem.

7
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Theorem 2.3. Let ω(x, t) be the vorticity of a smooth solution v(x, t) of (E)0 in R
3 with

initial vorticity satisfying ‖ω0‖L∞ < ∞. The particle trajectory map {X(·, t)} and the
particle trajectory map A(·, t) are generated by v(x, t). We set the vorticity direction field
ξ(x, t) = ω(x,t)

|ω(x,t)| . Let {(λj (x, t), ej (x, t))}3
j=1 be the pairs of the eigenvalues and normalized

eigenvectors of the matrix

M(x, t) = (∇A(x, t))T ∇A(x, t),

where we keep the ordering for the corresponding eigenvalues

λ1(x, t) � λ2(x, t) � λ3(x, t) > 0. (2.11)

Suppose there exists a sequence {(xk, tk)} tending to (x̄, t̄ ) as k → ∞ such that
limk→∞ |ω(xk, tk)| = ∞, then necessarily

lim
k→∞

λ1(xk, tk) = ∞ and lim
k→∞

λ3(xk, tk) = 0, (2.12)

and

lim
k→∞

ξ(xk, tk) · e1(xk, tk) = 0. (2.13)

Furthermore, if

lim inf
k→∞

λ2(xk, tk) > 0, (2.14)

then

lim
k→∞

ξ(xk, tk) · e2(xk, tk) = 0. (2.15)

Remark 2.1. In the case when (2.13) and (2.15) happen, we note that

lim
k→∞

ξ(xk, tk) · e3(xk, tk) = 1, (2.16)

which is equivalent to

lim
k→∞

|ξ(xk, tk) − e3(xk, tk)| = 0. (2.17)

Namely, as (xk, tk) tends to (x̄, t̄ ), the sequence of vorticity direction vectors {ξ(xk, tk)} tends to
align with the eigenvector of M(xk, tk) with the smallest eigenvalue, which is in the direction
of maximum stretching rate. Taking into account formula (2.9), we obtain the following
theorem immediately from theorem 1.2.

Theorem 2.4. Let (v(x, t), ρ(x, t)) be a smooth solution of (E) and {X(·, t)} be the particle
trajectory generated by v(x, t). Let γ0(s) be a vortex line for the initial vorticity ω0. We set
γ (s, t) = X(γ0(s), t), which is also a vortex line by the Helmholtz theorem. Then, we have
the following invariants along the trajectories of the vortex lines:

|ω(γ (s, t), t)|
|ρ(γ (s, t), t)|∣∣ ∂γ (s,t)

∂s

∣∣ = |ω0(γ0(s))|
|ρ0(γ0(s))|

∣∣ ∂γ0(s)

∂s

∣∣ . (2.18)

Corollary 2.2. Let ω = curlv and γ (s, t) as in theorem 2.4 and ‖ω0/ρ0‖L∞ < ∞. Suppose
there exist a sequence {(sk, tk)} and (s̄, t̄ ) such that (sk, tk) → (s̄, t̄ ), and

lim
k→∞

|ω(γ (sk, tk), tk)|
|ρ(γ (sk, tk), tk)| = ∞, (2.19)

then necessarily

lim
k→∞

∣∣∣∣∂γ

∂s
(sk, tk)

∣∣∣∣ = ∞. (2.20)
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Namely, a singularity of |ω|/|ρ| at a point is accompanied by infinite stretching of the vortex
line at the same point.

Remark 2.2. In the case of (E)0 thin vortex tube (vortex filament) stretching near the
singularity of vorticity in the 3D Euler equations is a well-known fact in the elementary fluid
mechanics (see e.g.[9]), which is immediate from Kelvin’s circulation theorem. The above
corollary, in contrast, is about stretching of individual vortex lines, not the tubes.

2.3. The magnetohydrodynamic equations

We are concerned here with the ideal MHD system in R
3,

(MHD)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂v

∂t
+ (v · ∇)v = −∇p − b × curl b,

∂b

∂t
+ (v · ∇)b = (b · ∇)v,

div v = div b = 0,

v(x, 0) = v0(x), b(x, 0) = b0(x),

where v = (v1, v2, v3), vj = vj (x, t), j = 1, 2, 3, is the velocity of the flow, p = p(x, t) is
the scalar pressure, b = (b1, b2, b3), bj = bj (x, t), is the magnetic field, and v0, b0 are the
given initial velocity and magnetic field, satisfying div v0 = divb0 = 0. Below, {X(a, t)} is
the particle trajectory mapping generated by v(x, t), defined by a smooth solution of (MHD),
and A(x, t) = X−1(x, t) is the back-to-label map. As for the vorticity transport formula the
second equation of (MHD) implies that we have

b(X(a, t), t) = ∇aX(a, t)b0(a), (2.21)

which provides us with the following theorem due to theorem 1.2.

Theorem 2.5. Let v(x, t) be a smooth solution of (MHD) with the initial data satisfying
‖b0‖L∞ < ∞, which generates the particle trajectory map {X(·, t)} and the particle trajectory
map A(·, t). We set the direction-vector field of the magnetic field ξ(x, t) = b(x,t)

|b(x,t)| , and let

{(λj (x, t), ej (x, t))}3
j=1 be the pairs of the eigenvalues and normalized eigenvectors of the

matrix

M(x, t) = (∇A(x, t))T ∇A(x, t),

where we keep the ordering for the corresponding eigenvalues

λ1(x, t) � λ2(x, t) � λ3(x, t) > 0. (2.22)

Suppose there exists a sequence {(xk, tk)} tending to (x̄, t̄ ) as k → ∞ such that
limk→∞ |b(xk, tk)| = ∞, then necessarily

lim
k→∞

λ1(xk, tk) = ∞, and lim
k→∞

λ3(xk, tk) = 0, (2.23)

and

lim
k→∞

ξ(xk, tk) · e1(xk, tk) = 0. (2.24)

Furthermore, if

lim inf
k→∞

λ2(xk, tk) > 0, (2.25)

then

lim
k→∞

ξ(xk, tk) · e2(xk, tk) = 0. (2.26)
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Remark 2.3. We have a similar remark to remark 2.1, and have

lim
k→∞

|ξ(xk, tk) − e3(xk, tk)| = 0, (2.27)

in case (2.25) holds. Namely, as (xk, tk) tends to (x̄, t̄ ), the sequence of magnetic direction
vectors {ξ(xk, tk)} tends to align with the eigenvector of M(xk, tk) with the smallest eigenvalue,
which is in the direction of maximum stretching rate.

Theorem 2.6. Let (v(x, t), b(x, t)) be a smooth solution of (MHD), and {X(·, t)} the particle
trajectory generated by v(x, t). Let γ0(s) be an integral curve for the initial magnetic field
b0(γ0(s)). We set γ (s, t) = X(γ0(s), t), which is also an integral curve of the magnetic field
b(x, t). Then, we have the following invariants:

|b(γ (s, t), t)|∣∣ ∂γ (s,t)

∂s

∣∣ = |b0(γ0(s))|∣∣ ∂γ0(s)

∂s

∣∣ . (2.28)

Corollary 2.3. Let b, γ (s, t) be as in theorem 2.6 and ‖b0‖L∞ < ∞. Suppose there exist a
sequence {(sk, tk)} and (s̄, t̄ ) such that (sk, tk) → (s̄, t̄ ), and

lim
k→∞

|b(γ (sk, tk), tk)| = ∞, (2.29)

then necessarily

lim
k→∞

∣∣∣∣∂γ

∂s
(sk, tk)

∣∣∣∣ = ∞. (2.30)

Namely, a singularity of the magnetic field of (MHD) is accompanied by an infinite stretching
of magnetic field lines in the direction of magnetic field.
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